Physical Challenges and Adaptations

Sam Shahpar, MD
Assistant Professor, Feinberg School of Medicine at Northwestern University
Attending Physician, Cancer Rehabilitation Program at Shirley Ryan Ability Lab and Robert H. Lurie Comprehensive Cancer Center of Northwestern
DISCLOSURES & SUPPORT

• I have no stocks, patent rights or employment with any company

• I have consulting/advisory board agreements with:

• I have pre-clinical laboratory and/or clinical trial support from the following companies:
Objectives

• Define Physiatric Role in Patient Care

• Increase Awareness of Common impairments seen in Brain Tumor Survivors
 • Hemiplegia
 • Impaired coordination
 • Fatigue
 • Cognitive Dysfunction, Aphasia

• Review interventions that can be implemented to address the Impairments
 • Therapy services
 • Equipment, DME, Adaptive Aids
 • Technology services
 • Exercise
What is a physiatrist?

- A physiatrist is a Physician specialist in Physical Medicine and Rehabilitation (PM&R), responsible for patient functional health.

- PM&R is a medical specialty emphasizing the prevention, diagnosis, treatment, and restoration of functional loss produced by medical illness causing temporary or permanent functional impairment.

- Rehabilitation TEAM addresses the function of the whole patient, as compared with a focus on an organ system or systems.
Conditions treated…

- Amputation
- Spinal cord injury
- Traumatic brain injury
- Stroke
- Musculoskeletal injuries
- Pain syndromes
- Cardiac disorders
- Neurologic disorders

Among many others… including Benign and Malignant Brain Tumors
What is Cancer or Brain Tumor Rehabilitation?

• Any evaluation/intervention assisting in restoration of maximum function and ABILITY…

• in ANY patient with cancer/brain tumor…

• at ANY point in the disease continuum
Unique Survivorship Issues/Experiences

• Disease-specific
 • Cancer/Tumor type
 • Organ involvement (local/remote)

• Treatment-specific
 • Surgery
 • Chemotherapy, Hormonal therapy
 • Radiation

• Individual-specific
 • PRE-CANCER MEDICAL/FUNCTIONAL STATUS
 • PRE-DIAGNOSIS PSYCH/SOCIAL STATUS
Epidemiology

• Over 700,000 Brain tumor survivors in the USA (primary malignant and non-malignant brain and CNS tumors)

• Almost 80,000 people will be diagnosed with a primary brain tumor body this year

• Average age at diagnosis for all primary brain tumors is 60 years

• 2nd most common cancer in children 0-14 years old and leading cause of death

• 3rd most common cancer in ages 15-39 and 3rd most common cause of death

https://www.abta.org/about-brain-tumors/brain-tumor-faqs/
Epidemiology

- Overall incidence of brain tumors remains small, can be a source of significant functional impairment due to neurologic sequelae
 - Potential for many of these patients to require rehabilitation services
Impairments

- In 2001, Mukand et al. (Am J Phys Med) retrospective reviewed 51 adult patients with brain tumor diagnosis
 - 31.3% Glioblastoma, 25.5% Meningioma, and 25.5% Metastatic

- Most common deficits:
 - Impaired cognition – 80%
 - Weakness - 78%
 - Visual-perceptual deficit – 53%
 - Sensory loss – 38%
 - Bowel and bladder dysfunction - 37%

- 74.5% had 3+ concurrent neurologic deficits (39.2% 5+ deficits)
Impairments

• In 2012, Kim et al (Supp Care Cancer) evaluated fatigue using in 25 brain tumors patients post-resection admitted to inpatient rehabilitation unit
 • Used Brief Fatigue Inventory (BFI) and Piper Fatigue Scale (PFS)

• 84% of patients reported fatigue over previous week
 • No significant difference between benign and malignant tumors

• No exacerbation or improvement in either fatigue scale after 4 week course of inpatient rehabilitation

• Insomnia was independent significant predictor of fatigue
Impairments

• In 2013, Zucchella et al (J NeuroOncology) performed a prospective cross-sectional study of 147 brain tumor outpatients in Italy evaluating for cognitive impairments

• 54.4% demonstrated cognitive impairment
 • 46.25% of this group had multi-domain impairments

• Deficits included language, memory, attention, executive functioning, and processing speed

• Cognitive deficits were significantly higher in older patients, those who had received chemotherapy, and those with Left hemisphere lesions
Impairments

- Hemiplegia
- Generalized Weakness
- Visual impairments
- Vestibular Dysfunction
- Impaired coordination
- Cognitive Dysfunction
- Aphasia
- Fatigue
Identified Functional Issues

- Pain
- Weakness/Deconditioning
- Mobility Loss
- ADL’s
- Cognition
- Communication
- Swallowing/Nutrition
- Bowel/Bladder/Sexual dysfunction
- Skin integrity/breakdown
- Social Support/Depression
- Vocational/Economic concerns
This is Rehabilitation at its BEST

- Oncology Team (Medical, Surgical, Radiation)
- Rehabilitation Physician
- Physical Therapist
- Psychologist
- Pharmacist
- Social Worker
- Exer. Physiologist
- Chaplain
- Dietitian
- Occupational Therapist
- Speech Language Pathologist
- Rehabilitation Nurse
- Primary Care Team
Physical Therapist

- Work on exercise, mobilization and physical modalities to improve function.
- LE>UE focus, but treat whole body
- Training 5-6 years, DPT
Occupational Therapy

• Work on ADLs, IADLs, coordination

• Hand therapy

• Adaptive equipment

• Training 4-5 years (Master’s level)
Speech Language Pathology

• Communication
• Cognition
• Swallowing
• Training of Masters or Doctoral
Recreational Therapy, Vocational Counseling

Recreational therapy
• Using leisure skills to promote functional gains, educating patients about recreational options

Vocation counseling
• Advise Re: employment options/adaptations
Prosthetist/Orthotist

• Prosthetics—artificial limbs

• Orthotics—braces

• Usually trained in both
Tools

• Assistive Devices

• Durable Medical Equipment

• Adaptive Aids
Ambulatory Aids
Wheelchairs
Adaptive Aids
Orthotics
Orthotics
Technology Resources
Exercise

- Known to benefit multiple aspects in all individuals
 - Cardiovascular
 - Pulmonary
 - Endocrine
 - Neurologic
 - Well-Being/Psychologic
 - Quality of Life

- What does this mean to the brain tumor patient?
Exercise Molecular Effects

• Has been shown to **alter specific pathways of tumor initiation/carcinogenesis**.

• May exert a cancer preventive effect by dampening the processes involved in the promotion and progression of malignancy
 • Increased efficiency to handle reactive oxygen species (ROS)
 • Enhancing efficiency of cellular apoptosis
 • Differentiating and modulating pro-inflammatory pathways that enhance carcinogenesis

• Ability to stimulate innate immune responses and control angiogenesis
Cardiopulmonary Fitness

- Measured by peak oxygen consumption
 - \(VO_{2\text{peak}} = \text{mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1} \), 3.5 \(\text{mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1} = 1 \) Metabolic Equivalent/MET

- Known **key predictor for mortality** in all populations

- Previous research \(\rightarrow 12\% \) improvement in survival for men and a reduction of death by 17\% in women for every 1 MET increase in aerobic capacity \(^1,^2 \)

- Breast cancer population \(\rightarrow VO_{2\text{peak}} \) is 21\% lower than age-matched healthy sedentary women.\(^3 \)

Deconditioning

• Cumulative Multifactorial Phenomenon

• Results in Functional decline due to changes in multiple body systems
Deconditioning

• Lose 5-10% Muscle Mass per week
• Complete Immobility: Lose 1-3% of strength/day (1 week: Lose as much as 20-30%)
• After 3 weeks of bed rest, Resting HR increase to 10-12/min
• One contraction a day at 50% of maximal strength is enough to prevent this decrease
• Sensory Deprivation /Social Isolation/Depression
• Decreased Pain Tolerance
Efficacy of Exercise

- Controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs)
 - Evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline
- Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri
 - Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus
- Compared to healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits
- Found specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline
- Argue that exercise training should be incorporated into the development of neuro-rehabilitative program for this population and other brain injury populations

Efficacy of Exercise

- Prospectively tested whether exercise is associated with lower brain cancer mortality in 111,266 runners and 42,136 walkers from the National Runners’ and Walkers’ Health Studies
 - Analyses of mortality versus metabolic equivalent hours per day of exercise (MET-hours per day)

- National Death Index identified 110 brain cancer deaths during an 11.7-yr average follow-up
 - Runners and walkers were combined because the brain cancer risk reduction did not differ significantly between MET-hours per day run and MET-hours per day walked (P = 0.66)

- When adjusted for sex, age, race, education, and cohort effects, the risk for brain cancer mortality was 43.2% lower for those who exercised 1.8 to 3.5 MET-hr/day (P = 0.04) and 39.8% lower for those who exercised >3.6 MET-hr/day (P = 0.05) compared with <1.8 MET-hr/day at baseline

- Pooling the runners and walkers who expended >1.8 MET-hr/day showed a 42.5% lower risk of brain cancer mortality for the entire sample (P = 0.02) and 40.0% lower risk when three deaths that occurred within 1 yr of the baseline survey were excluded (P = 0.04)

Efficacy of Exercise

• 243 adult patients with recurrent WHO Grade 3 or 4 malignant glioma with KPS ≥ 70

 • Self-Administered Questionnaire assessing Exercise behavior, 6 Minute Walk Test (6MWT)

 • Median follow-up 27.43 months

Efficacy of Exercise

• No Significance in Survival between categories of 6MWT

Efficacy of Exercise

• >9 MET-hours per week associated with median survival of 21.84 months
 • <9 MET-hours per week associated with median survival of 13.03 months

 • Functional Capacity NOT significant

 • Exercise Behavior Significant

Exercise Compliance

• 106 brain tumor survivors completed a questionnaire on self-reported exercise behavior
 • 75% had grade III or IV disease (predominantly anaplastic astrocytoma and GBM)

• 47% perceived themselves as able to exercise during treatment
 • 84% after treatment

• 45% wanted information about exercise during treatment
 • 70% after treatment

• Engage patients, families, friends, and medical personnel to take further interest and active roles in physical activity, exercise

• Determine consistent ways to measure the effect of activity on the brain tumor, treatment effects, and functions
THANK YOU!!!!!

QUESTIONS????
Thank you for joining us for our presentation on “Physical Challenges and Adaptations”. We hope the information that you received was beneficial. This Presentation was offered by the American Brain Tumor Association, an Illinois not for profit corporation (the “Company”), at no charge to users of the World Wide Web, with the express condition that the Presentation’s attendees agree to be bound by the terms and conditions set forth herein.

The information provided from this Presentation was for informational purposes only. This Presentation: (i) was not intended as medical advice, diagnosis or treatment; (ii) was not a substitute for medical advice, diagnosis or treatment; and (iii) does not provide advice on diagnoses, treatments or conditions for individual patients. All health and treatment decisions must be made with your physician(s), utilizing your specific, confidential and individual medical information.

This Presentation may have contained sponsorships. Sponsors are solely responsible for ensuring that material submitted for inclusion in this Presentation on the Company’s website is accurate and complies with applicable laws.

A sponsor’s inclusion in this Presentation is not an endorsement or recommendation of any product, treatment, physician, hospital, test, procedure, opinion or other information that may be mentioned during this Presentation. Reliance on any information in this Presentation is solely at your own risk.

The Company, its affiliates, assigns and agents are not responsible, and expressly disclaim any liability, for errors or omissions in information provided in this Presentation or any actions resulting from the use of such information.

In addition, the references set out in this Presentation are provided for your convenience only. The Company does not endorse the information contained on linked websites or individual(s), companies or institutions operating such websites.

Please do not hesitate to contact us if you have any further questions. Thank you for being an exceptional audience.